RISKS POSED BY BRINES CONTAINING DISSOLVED CO₂ Ron Falta, Sally Benson, and Larry Murdoch Clemson University and Stanford University March 23, 2010 ### EPA- Science to Achieve Results (STAR) project (3 year) - Ron Falta (PI): multiphase flow, subsurface remediation, modeling - Sally Benson (Co-PI): geologic CO₂ sequestration, laboratory experiments of CO₂ relative permeability - Larry Murdoch (Co-PI): hydrogeology, subsurface remediation, modeling - Graduate Students: Miles Atkinson, Kirk Ellison, Chris Patterson, Catherine Ruprecht at Clemson; MS student at Stanford - Barbara Klieforth: EPA Project Officer #### CO₂ Density and Solubility with Depth Calculated using the Lawrence Berkeley Lab TOUGH2-ECO2N code assuming 35° C and 10,000 mg/l NaCl #### The high CO₂ solubility is significant - At 3000 ft depth, we get ~50 g/l (50 times more CO₂ than beer!) - At a CO₂ phase saturation of 7%, the amount of CO₂ that is dissolved equals the amount in the supercritical CO₂ phase - When CO₂ dissolves, the aqueous phase becomes more dense (about 1% here) Calculated using TOUGH2-ECO2N ### Geologic CO₂ Storage Security - Stratigraphic trapping supercritical CO₂ trapped by confining layers - Residual CO₂ trapping – supercritical CO₂ is locally trapped by capillary forces - Solubility trapping CO₂ dissolves in pore water (up to 60 g/l) - Mineral trapping CO₂ reacts to form solid minerals (carbonates) #### The Dissolved CO₂ is Secure – Or Is It? - Density increase favors downward flow of CO₂ saturated brine - Upward flow would require a caprock defect, and an upward hydraulic gradient - However, if a saturated CO₂ brine moved upward, the CO₂ would come out of solution (exsolve), leading to a potentially mobile gas phase Darcy's Law for buoyancy flow $$V = -\frac{k}{\mu}(\bar{\rho} - \rho_{\infty})g$$ Darcy's Law for groundwater flow $$V = -K \frac{\partial h}{\partial z} = -\frac{k \rho_{\infty} g}{\mu} \frac{\partial h}{\partial z}$$ Critical upward gradient to mobilize CO₂ saturated brine $$\left| \frac{\partial h}{\partial z} \right| = \frac{(\overline{\rho} - \rho_{\infty})}{\rho_{\infty}}$$ ### TOUGH2-ECO2N simulation: CO₂ saturated brine moves up an open fault to a shallower aquifer - Confined saline formation contains 50.7 g/I CO₂ - Connected to fresh water aquifer by fault, k=10⁻¹¹ m² - System initially in static equilibrium - Reduce hydraulic head at top of upper aquifer by 30 m. ## CO_2 gas saturation after 100 years, low gas residual trapping ($S_{gr} = 5\%$) Mobile gas phase moves to top of aquifer Large zone of trapped gas phase CO₂ is formed Dense brine with dissolved CO₂ moves away from fault laterally ### CO_2 gas saturation after 100 years, high gas residual trapping ($S_{gr} = 20\%$) Small zone of trapped gas phase CO₂ is formed. Gas never achieves high mobility Dense brine with dissolved CO₂ moves away from fault laterally #### Project Objectives - Develop pore-level understanding of the gas exsolution process (experimental, numerical) - Determine mobility of exsolved CO₂ (experimental) - Establish relative permeability characteristics of exsolved CO₂ (experimental, numerical) - Evaluate local and regional scale hydrogeologic characteristics that could lead to unwanted dissolved CO₂ transport (numerical) - Evaluate alternative CO₂ disposal schemes for reducing risk - Determine what methods of remediation would be most effective if CO₂ contamination is detected. ## Laboratory experiments – Benson Lab, Stanford CO₂ saturated water pump - High pressure core flooding apparatus; can inject CO₂, brine, or both - Medical X-Ray Computed Tomography (CT) to image gas saturation - Precision pumps, flow meters, pressure transducers ### Initial CO₂ exsolution experiments - Inject CO₂ saturated brine at 1800 psi into brine filled sandstone core - Close valves, then drop core pressure to 1400, and then 1000 psi scan 1 1400 psi scan 2 1036 psi ### Initial CO₂ exsolution experiments #### Pore-scale simulations - Use Comsol Multiphysics PDE solver to simulate exsolution and bubble behavior at pore level - Full fluid mechanics and micro-scale mass transfer Figure 10. Pore-scale simulation of gravitational coalescence of a rising bubble of NAPL (blue) with a NAPL-water (red) interface using a level-set technique. Proposed simulations would use modified geometry and fluid properties to represent CO₂ in water-filled pores. ### CO2 phase relative permeability - Evaluate the CO₂ residual saturation (mobility) following exsolution - Anticipate that behavior may be different from CO₂ phase injection experiments CO₂ phase injection CO₂ exsolution from brine ### Regional-scale variable density flow modeling - Large scale models of current or proposed CO₂ injection sites - single-phase water flow with brine/ CO₂ density effects - MODFLOW-SEAWAT or TOUGH2-ECO2N ### Multiphase simulation of CO₂ injection - Multiphase flow simulations with TOUGH2-ECO2N or possibly CMG GEM code - Study supercritical CO₂ injection followed by dissolution and brine movement - Use new relative permeability functions/data from experiments - Also evaluate direct injection of dissolved CO₂ ### CO₂ remediation designs - Use the multiphase flow CO₂ simulations as initial conditions - Use the TOUGH2-ECO2N or CMG GEMS programs - Evaluate what actions would reduce or eliminate the risk posed by CO₂ that escaped from the original storage formation #### Summary - Three year project that focuses on dissolved CO₂ that comes out of solution upon depressurization - Laboratory, pore-scale and field scale modeling - Quantification of exsolved CO₂ mobility and relative permeability - Development of strategies for reducing risk and remediation